Analysis of activator and repressor functions reveals the requirements for transcriptional control by LuxR, the master regulator of quorum sensing in Vibrio harveyi.;van Kessel JC, Ulrich LE, Zhulin IB, Bassler BL;mBio 2013 Jul 9;
4(4):1
[23839217]
Authors used ChIP-seq to identify LuxR binding sites, and then cross-referenced that with a DNA-array that assayed LuxR regulation.
Sites, though not reported in the paper, were derived from a PSSM matrix supplied by the author.
ChIP assay conditions
To identify the HCD genes controlled by LuxR, the authors compared the profile of a ΔluxO ΔaphA strain to that of a ΔluxO ΔaphA ΔluxR strain
ChIP notes
Plasmids expressing either FLAG-luxR (pAP116) or FLAG-luxR R17C (pST012; a DNA binding-defective luxR mutant) and empty vector controls (pSLS3 or pJV139) were conjugated into a V. harveyi ΔluxR strain (KM669). The ChIP protocol is based on previously published methods (44) and the Affymetrix ChIP assay protocol with several modifications. Overnight cultures were diluted 1:50,000 and grown for 16 h at 30°C. Fifty OD600 units of cells were cross-linked and washed as previously described (44), and cells were lysed in 1 ml of lysis buffer (1× protease inhibitors [Sigma], 50 µg ml−1 lysozyme, 1× Bugbuster, 1% Triton X-100, and 1 mM phenylmethylsulfonyl fluoride [PMSF]) for 20 min at room temperature on a rotator. Following lysis, the DNA was sheared by sonication to an average size of 100 to 1,000 bp. The supernatant was clarified at 13,000 rpm for 10 min at 4°C. Immunoprecipitation reaction mixtures contained a 200-µl aliquot of input sample, 800 µl of IP buffer (50 mM HEPES-KOH, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, and 1 mM PMSF), and 40 µl EZ-view anti-FLAG agarose beads (Sigma) (equilibrated in Tris-buffered saline [TBS]) and were carried out for 2 h at room temperature on a rotator. Following immunoprecipitation, beads were collected and washed (Affymetrix ChIP assay protocol). Immunoprecipitated complexes were eluted, and cross-links were reversed as described elsewhere (Affymetrix ChIP assay protocol). Samples (input DNA and IP DNA) were analyzed by qRT-PCR to assess the quality of the immunoprecipitation from four independent experiments. DNA from representative ChIP samples was prepared for sequencing using the Illumina ChIP-seq sample prep kit and verified by qRT-PCR. The following ChIP samples were sequenced: the input DNA and IP DNA from FLAG-luxR (pAP116), IP DNA from FLAG-luxR R17C (pST012), and input DNA and IP DNA from an empty vector control (pJV139). See the supplemental material for a description of ChIP-seq data analysis procedures.
Regulated genes for each binding site are displayed below. Gene regulation diagrams
show binding sites, positively-regulated genes,
negatively-regulated genes,
both positively and negatively regulated
genes, genes with unspecified type of regulation.
For each indvidual site, experimental techniques used to determine the site are also given.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
ChIP-Seq is equivalent to ChIP-chip down to the last step. In ChIP-Seq, immunoprecipiated DNA fragments are prepared for sequencing and funneled into a massively parallel sequencer that produces short reads. Even though the sonication step is the same as in ChIP-chip, ChIP-Seq will generate multiple short-reads within any given 500 bp region, thereby pinning down the location of TFBS to within 50-100 bp. A similar result can be obtained with ChIP-chip using high-density tiling-arrays. The downside of ChIP-Seq is that sensitivity is proportional to cost, as sensitivity increases with the number of (expensive) parallel sequencing runs. To control for biases, ChIP-seq experiments often use the "input" as a control. This is DNA sequence resulting from the same pipeline as the ChIP-seq experiment, but omitting the immunoprecipitation step. It therefore should have the same accessibility and sequencing biases as the experiment data.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.