For the selected transcription factor and species, the list of curated binding sites
in the database are displayed below. Gene regulation diagrams show binding sites, positively-regulated genes,
negatively-regulated genes,
both positively and negatively regulated
genes, genes with unspecified type of
regulation.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The DNAse foot-printing method starts by focusing on a given region of interest (e.g. a promoter region) and amplifying it by PCR to obtain lots of sample. It then throws in the TF and then the DNAse. The mix is left to stir for a short time and then gel electrophoresis is run to compare the pattern of fragments in a control (no TF) and in the sample. If the TF has bound the sample, it will have protected a stretch of DNA (encompassing some fragments of the control) and thus those fragments will not appear in the sample gel. The fragments can then be cut-out from the gel, purified and sequenced to obtain the sequence of the protected region. This is often used to identify the binding motif of a TF for the first time. The foot-printing will typically resolve the protected region down to 50-100 bp, and the sequence can be then examined for possible TF-binding sites either by eye of using a computer search.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The DNAse foot-printing method starts by focusing on a given region of interest (e.g. a promoter region) and amplifying it by PCR to obtain lots of sample. It then throws in the TF and then the DNAse. The mix is left to stir for a short time and then gel electrophoresis is run to compare the pattern of fragments in a control (no TF) and in the sample. If the TF has bound the sample, it will have protected a stretch of DNA (encompassing some fragments of the control) and thus those fragments will not appear in the sample gel. The fragments can then be cut-out from the gel, purified and sequenced to obtain the sequence of the protected region. This is often used to identify the binding motif of a TF for the first time. The foot-printing will typically resolve the protected region down to 50-100 bp, and the sequence can be then examined for possible TF-binding sites either by eye of using a computer search.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The DNAse foot-printing method starts by focusing on a given region of interest (e.g. a promoter region) and amplifying it by PCR to obtain lots of sample. It then throws in the TF and then the DNAse. The mix is left to stir for a short time and then gel electrophoresis is run to compare the pattern of fragments in a control (no TF) and in the sample. If the TF has bound the sample, it will have protected a stretch of DNA (encompassing some fragments of the control) and thus those fragments will not appear in the sample gel. The fragments can then be cut-out from the gel, purified and sequenced to obtain the sequence of the protected region. This is often used to identify the binding motif of a TF for the first time. The foot-printing will typically resolve the protected region down to 50-100 bp, and the sequence can be then examined for possible TF-binding sites either by eye of using a computer search.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The DNAse foot-printing method starts by focusing on a given region of interest (e.g. a promoter region) and amplifying it by PCR to obtain lots of sample. It then throws in the TF and then the DNAse. The mix is left to stir for a short time and then gel electrophoresis is run to compare the pattern of fragments in a control (no TF) and in the sample. If the TF has bound the sample, it will have protected a stretch of DNA (encompassing some fragments of the control) and thus those fragments will not appear in the sample gel. The fragments can then be cut-out from the gel, purified and sequenced to obtain the sequence of the protected region. This is often used to identify the binding motif of a TF for the first time. The foot-printing will typically resolve the protected region down to 50-100 bp, and the sequence can be then examined for possible TF-binding sites either by eye of using a computer search.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
All binding sites in split view are combined and a sequence logo is generated. Note that it
may contain binding site sequences from different transcription factors and different
species. To see individiual sequence logos and curation details go to split view.