For the selected transcription factor and species, the list of curated binding sites
in the database are displayed below. Gene regulation diagrams show binding sites, positively-regulated genes,
negatively-regulated genes,
both positively and negatively regulated
genes, genes with unspecified type of
regulation.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
ChIP-chip (and to a lesser degree ChIP-Seq) results are often validated with ChIP-PCR, in which a PCR with specific primers is performed on the pulled-down DNA. As in the case of RNASeq, there are many variations of these main techniques.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
All binding sites in split view are combined and a sequence logo is generated. Note that it
may contain binding site sequences from different transcription factors and different
species. To see individiual sequence logos and curation details go to split view.